Advanced Cross-Layer Jamming Detection and Mitigation in Wireless Broadcast Networks

¹Yogesh Adhar Mali *AITR Indore*.

Abstract-Wireless communication systems are often susceptible to the jamming attack where adversaries attempt to overpower transmitted signals by injecting a high level of noise. Jamming is difficult to mitigate in broadcast networks because transmitting and receiving are inherently symmetric operations: A user that possesses the key to decode a transmission can also use that key to jam the transmission. We describe a code tree system that provides input to the physical layer and helps the physical layer circumvent jammers. In our system, the transmitter has more information than any proper subset of receivers. Each receiver cooperates with the transmitter to detect any jamming that affects that receiver. In the resulting system, each benign user is guaranteed to eliminate the impact of the attacker after some finite number of losses with arbitrarily high probability. Our scheme mitigates the jamming attack while allowing the transmitter to transmit on fewer codes than the number of users. We simulated our system in a theoretical setting using Dot NET. The result shows significant improvement over naively transmitting on a single shared code.

Keywords

[Computer-Communication Networks]: General—Security and protections, (e.g., firewalls); C.2.2 [Computer-Communication Networks]: Network Protocols—Proto-col architecture (OSI model)

General Terms-Security, Performance

1. INTRODUCTION

Wireless communication systems are often susceptible to the jamming attack in which adversaries attempt to overpower transmitted signals by injecting a high level of noise, thereby lowering the signal-to-noise ratio (SNR). Lowering the SNR, in turn, can significantly reduce the achievable rate of a communication system.

An effective countermeasure to the jamming attack is increasing the bandwidth of the spectrum of the communication system and using spread spectrum as part of the modulation technique [3]. In spread-spectrum systems, a transmitter takes advantage of the increased bandwidth to redundantly encode information using a spreading code. To receive a message, a spread-spectrum receiver decodes the incoming signal by correlating the signal with the spreading code. Spread-spectrum codes are thus inherently symmetric: that is, the transmitter and the receiver use the same information for encoding and for decoding. Without knowing the spreading code used by a pair of a transmitter and receiver, unintended signals such as jamming or selfinterference will likely appear noise-like upon decoding, and most of the unintended signal power can then be rejected by filtering. However, if a jammer discovers the spreading code in use (for example, by compromising the receiver), all benefit of using spread spectrum against jamming is lost.

In this paper, we present a scheme that allows a receiver to detect jamming by observing that a secondary message is received without the primary message. We then

present a keying scheme that allows the transmitter to cooperate with the receiver to isolate the set of jammers from the set of benign users. Finally, we develop a technique called tree remerging to optimize our keying scheme so that a transmitter can group benign receivers together and let that group share one spreading code, thereby providing satisfactory quality of service to the receivers without requiring higher total transmission power.

The ability of spread spectrum systems to simultaneously transmit and receive has long been used in commercial systems such as IS-95 [7]. Though IS-95 is not suitable for use in an adversarial environment due to the use of fixed and published codes, recent work by Li et al [8] uses AES to generate unpredictable, time-varying codes from fixed, secret codes. We assume the use of equivalent time-varying hopping patterns to eliminate the security flaws inherent in using fixed patterns over an extended period of time.

Though FFH-CDMA can be highly effective against jamming in point-to-point communication systems in which a single sender transmits to a single receiver, it is difficult to prevent jamming in a broadcast system that transmits information to multiple users at once. This is because if the jammer discovers the hopping pattern in use (for example by compromising a receiver) all benefit of using CDMA against jamming is lost. There are two basic ways to achieve point-to-multipoint communications: first, a sender can use a single code to transmit to all receivers; alternatively, a sender can use one hopping pattern for each receiver. When a single hopping pattern is used, every legitimate receiver must have that hopping pattern, including any adversarial receivers, making it substantially easier for the jammer to acquire the hopping pattern and overcome the benefits of CDMA. Conversely, when an individual hopping pattern is used for each receiver, transmission is less power efficient since the total transmitted power is divided between hopping patterns. Hybrid schemes are also possible, where each hopping pattern is shared by several receivers, reducing the number of hopping patterns in the system. The usage of number of hopping patterns is highly related to the symmetry of the system and will be discussed more in depth in Section 3.1.

In this paper, we describe a binary tree structure implemented above the physical layer that takes advantage of the unique properties of code sequences in order to provide an anti-jam broadcast system based on any existing code sequence spread spectrum communication systems. We will show that this structure can achieve nearly as much packet delivery success as when the jammers know no code sequences.

For purposes of simplicity, we describe our protocol within the context of a Fast Frequency Hopping CDMA system; however, our solution can be generalized to other CDMA systems including Direct-Sequence CDMA and Orthogonal Frequency Division Multiplexing (OFDM). In fact, our work has broad applicability to a wide variety of existing wireless access technologies such as IEEE 802.11 [3], IS-95 [7], and cdma2000 [5], that are already CDMA systems.

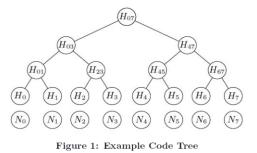
2. RELATED WORK

Jamming prevention using CDMA has been studied at length [13]. Other physical layer techniques, such as the use of multiple antennas, have also been studied, but those do not make use of higher-layer feedback and are orthogonal to our approach.

Asymmetric cryptography [9], such as RSA [11] and Diffie-Hellman [2], rely on the alleged asymmetry of certain computational functions to achieve public-key cryptography and digital signatures. Our work differs in that it overlays an inherently symmetric operation: wireless transmission. Other work has used time and delayed disclosure to provide asymmetry [10, 6]. If we do this with spreading codes (as de-scribed by Kuhn [6]), we still need a jam resistant way to provide receivers with a spreading code.

The effectiveness of jamming [1] and the difficulty of differentiating jamming from congestion [13] have previously been discussed, but they do not propose solutions to traverse the jammed area. In particular, Xu et al [14] try to detect and avoid jammed regions.

To algorithmically detect and avert jamming, we take ad-vantage of the tree structure proposed by several key management methods. In particular, Sherman and McGrew [12] proposed a binary key tree where each leaf corresponds to a single user, and each user possesses the keys corresponding to all ancestors of that leaf. Our work uses a similar structure (Section 3) but contributes novel techniques of particular value in wireless networks, including jamming detection and tree recombination.


3. TREE CODING SCHEME

3.1 Symmetry of Hopping Patterns

The current use of hopping patterns in a FFH-CDMA system is analogous to a symmetric-key cryptosystem, in which an encryption code and decryption code are easily derivable from each other. For example, in the FFH-CDMA system, encoding and decoding both use the same hopping pattern. By keeping each hopping pattern a secret between the transmitter and receiver, the hopping pattern effectively serves as a cryptographic key for both encryption and decryption. This symmetry presents significant challenges to the design of a broadcast system: a symmetric key should not be shared otherwise a single compromised user can jam in a way that cannot be rejected by frequency hopping.

3.2 Tree Based Approach

In this section, we describe our approach to create an asymmetric system that allows detection and isolation of jammers in a spread-spectrum system. This approach is similar to the key tree proposed by Sherman and McGrew [12]. Each transmitter builds a balanced binary tree of randomly generated hopping patterns. The transmitter associates each legitimate receiver with a unique leaf in this binary tree, and gives this receiver the hopping patterns corresponding to that leaf and all ancestors of that leaf in the tree.

For example, user N_2 would have access to hopping patterns H_2 , H_{23} , H_{03} , and H_{07} .

When there are no jammers, a transmitter can transmit on a single hopping pattern; specifically, it would choose the hopping pattern corresponding to the root of the tree. Transmissions on this hopping pattern can be decoded by any legitimate receiver. For example, the transmitter would send on hopping pattern H₀₇. In general, in order to ensure that every receiver can decode the packet while ensuring power efficiency, the transmitter wants to transmit on a set of hopping patterns such that any user can decode using exactly one hopping pattern in the set. We call such set a disjoint cover. Once jamming has been detected on some hopping patterns (we discuss jamming detection in Section 3.3), the transmitter should avoid using such hopping patterns in the future. Because each extraneous hopping pattern used for transmission either increases the total power consumption or reduces the average received signal strength on each hopping pattern, we want to transmit on the smallest possible set of hopping patterns on which no jamming was detected.

3.3 Jamming Detection Algorithm

When the transmitter sends a packet, it will do so on the minimal disjoint cover on which no jamming had been previously detected, so that all legitimate receivers can decode the packet. In order to detect additional jammers, the transmitter additionally transmits on a test hopping pattern, which it randomly chooses from among the descendants of the cover. This redundant test hopping pattern allows the transmitter and receiver to cooperatively detect jamming on any hopping pattern in the cover that is an ancestor of the test hopping pattern. We call this ancestor the detectable hopping pattern.

If no jammers are present, each user should get either one or two identical messages, the first encoded using one of the patterns from the cover, and possibly a second encoded using the test hopping pattern. If any user receives the second message without receiving the first message, then it should suspect jamming on the detectable hopping pattern. Any user detecting jamming in this way should report that finding to the transmitter, for example by transmitting a Jamming Detected message using the leaf hopping pattern shared between the transmitter and the detecting receiver (because no jammer knows that leaf hopping pattern). In some instances, jamming on the detectable hopping pattern will not be detected. This can happen either when a jammer jams on the test hopping pattern or when no normal users know the test hopping pattern.

Testing can be generalized so that a set of test hopping patterns are used at each step, thus allowing a set of detectable hopping patterns. For example, if the current disjoint cover in use is $\{H_{03}, H_{45}, H_{67}\}$, then the test code set of $\{H_{01}, H_4\}$ would make the detectable set be $\{H_{03}, H_{45}\}$.

Response to Jamming:

When a transmitter detects jamming, it will choose a different cover. In particular, if jamming is detected on some hopping pattern h in the current cover, the transmitter will remove h from the cover and add the two children of h to the cover. For security reasons, jamming reports are only accepted from hosts that should know hopping pattern h. For example when jamming is detected on pat-tern H_{07} , the transmitter splits the cover into $\{H_{03}, H_{47}\}$. If jamming is further detected on H_{47} , the resulting cover would be $\{H_{03}, H_{45}$ and $H67\}$.

4. PARAMETER CHOICE

The safest technique for choosing test hopping patterns is to pick leaves because jammers do not have access to their siblings' patterns. However, when only a small fraction of a transmitter's legitimate receivers are within range, many tests are wasted because the test hopping patterns belong to absent users who cannot report jamming. If we choose test hopping patterns that are too close to the root, there is a greater probability that jammers will have the test hopping pattern. In this section we analyze the tradeoffs between these two extremes.

Each legitimate receiver can be characterized as either absent, normal, or a jammer. The root of a sub tree is jammed if any of the leaves of that sub tree are jammers; the root of a sub tree is absent if all of the leaves of that sub tree are absent; and otherwise the root of the sub tree is considered normal. These designations reflect how the network will re-act when the root of that sub tree is chosen as a test hopping pattern.

We consider the following algorithm for testing: we first test hopping patterns at a height of M, and if jamming is not detected on any of those patterns, we then test at height M – 1. If we assume that the set of tests at each height is independent and identically distributed, we can derive, at height M, the probability of detection P_M [d] and the expected steps until detection E_M [d], given there are 2^n total users, of which A are absent, J > 0 are jammers, and N > 0 are normal.

 P_M [d] can be calculated because detection happens at the root of a normal sub tree. Because a height M sub tree has

 $E_0[d]$ can also be calculated combinatorial. The calculation is similar to that of a geometric distribution. At height 0, all nodes are leaf nodes, and when testing leaf nodes, the probability of detecting jamming on the first test is the same as the probability of selecting a normal user. The probability of detecting jamming on the second test is equal to the probability of selecting an absent user or a jammer on the first test and then selecting a normal user on the second test. Extending this idea, the expected detection time is a weighted sum of detection probabilities. We sum only over $2^n - 2$ terms since there are only 2^n users and at least one of them is a jammer and another one a normal user. Then $E_0[d]$ is given by E_M [d] is then calculated recursively since the testing rule moves the testing level down when testing at level M is unsuccessful. The first half of the equation resembles $E_0[d]$, except that it is performed at height M. The second term is a penalty for non-detection at height M : this penalty consists of a part for wasting 2^M steps at height M and a recursive term for the expected number of detections at height M – 1.

5. EVALUATION

We performed a MATLAB simulation on the theoretical performance of our tree coding scheme. The simulation scenario consists of one base station, 20 normal users, and 0 to 10 jammers. The total jamming power at each receiver is equal to the number of jammers times the total received base station power (that is, each jammer is as powerful as the base station). Jammers that emit more power can be modeled by increasing the number of jammers. To make decoding more challenging, we assumed an additive white Gaussian noise whose power is 15dB higher than the total power from the base station at each receiver over the entire frequency occupied by the FFH-CDMA system. This is not an unrealistic scenario as spread spectrum systems often operate under noise floor. We implemented the spread spectrum system using FFH-CDMA with 127 channels and 63 hops per bit. Each jammer in this system allocates all power to jamming the frequency band specified in the frequency hopping pattern of the cover. For each number of jammers, we performed 10 tests of 10,000 6-bit messages transmitted by the base station.

This paper shows the results of our simulation. We computed the packet delivery ratio (PDR) by dividing the number of packets received by the number of packets sent. For each jamming strategy and number of jammers, we plot the average and 95% confidence interval on the packet delivery ratio. Because we had 20 normal users in each scenario (in addition to the transmitter and jammers), and because all normal users are within wireless transmission range of the transmitter, the best possible result is a packet delivery ratio of 20. Our scheme also delivers almost 100% of packets when there are five jammers or fewer and delivers more than 90% of packets between six to ten jammers even when jammers gain knowledge of codes used by the system.

6. CONCLUSIONS

This paper described a tree-based coding mechanism that can detect jamming and reconfigure to reduce the impact of jammers. We showed that the parameter choice of testing level may affect the efficiency of the system, and subsequently optimized this parameter. We also presented results simulated in a theoretical setting that showed the performance advantage of tree coding, and that jamming can be efficiently and effectively detected and circumvented in a wireless broadcast network.

REFERENCES

- Timothy X Brown, Jesse James, and Amita Sethi. Jamming and sensing of encrypted wireless ad hoc networks. Technical Report CU-CS-1005-06, University of Colorado at Boulder, 2006.
- [2] Whitfield Diffie and Martin E. Hellman. Privacy and authentication: An introduction to cryptography. Proceedings of the IEEE, 67(3):397–427, March 1979.
- [3] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-1997. The Institute of Electrical and Electronics Engineers, New York, New York, 1997.
- [4] V. Kawadia and P. Kumar. Power control and clustering in ad hoc networks. In Proceedings of
- [5] The Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), March 2003.
- [6] D. N. Knisely, S. Kumar, S. Laha, and S. Nanda.
- [7] J. S. Lee. Overview of the technical basis of Qualcomm's CDMA cellular telephone system design: a view of North American TIA/EIA IS-95. In Proc ICCS '94, volume 2, pages 353–358, November 1994.
- [8] Tontong Li, Jian Ren, Qi Ling, and Anil Jain. Physical layer built-in security analysis and enhancement of CDMA systems. In

Proceedings of the Military Communications Conference, 2005. MILCOM 2005. IEEE, pages 956–962, October 2005.

- [9] R. Merkle. Secure communication over insecure channels.
- Communications of the ACM, 21(4):294-299, 1978.
- [10] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar. SPINS: Security protocols for sensor networks. In Seventh Annual ACM International Conference on Mobile Computing and Networks (MobiCom 2001), Rome, Italy, July 2001.
- [11] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM,21(2):120–126 1978.
- [12] Alan T. Sherman and David A. McGrew. Key establishment in large dynamic groups using one-way function trees. IEEE Transactions on Software Engineering, 29(5):444–458, May 2003.
- [13] A. J. Viterbi. CDMA Principles of Spread Spectrum Communication. Addison-Wesley, 1995.
- [14] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of launching and detecting jamming attacks in wireless networks. In Proceedings of The 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005), pages 46– 57, May 2005.